Semantic Similarity Measure for Pairs of Short Biological Texts

نویسنده

  • Olivia Sanchez Graillet
چکیده

Finding the semantic similarity between biological texts, specially short texts, such as article abstracts and experiment descriptions of microarrays, may throw important information for experts in that field. To date, these methods have not been widely explored. In this paper, a comparison of different measures to calculate the semantic similarity of pairs of short biological texts is presented. An existing method for semantic similarity between general texts was adapted to be used in the biological context by employing the UMLS ontology. An evaluation of the methods was carried out and it was found that the adapted method works well for short biological texts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Semantic Similarity for Pairs of Short Biomedical Texts with Concept Definitions and Ontology Structure

Finding semantic similarity between short biomedical texts, such as article abstracts or experiment descriptions, may provide important information for health researchers. This paper presents a method for calculating text similarity in the biomedical context. The method implements a pairwise concept semantic similarity measure that uses concept definitions and ontology structure. The respective...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Using Standardized Lexical Semantic Knowledge to Measure Similarity

The issue of sentence semantic similarity is important and essential to many applications of Natural Language Processing. This issue was treated in some frameworks dealing with the similarity between short texts especially with the similarity between sentence pairs. However, the semantic component was paradoxically weak in the proposed methods. In order to address this weakness, we propose in t...

متن کامل

SemAligner: A Method and Tool for Aligning Chunks with Semantic Relation Types and Semantic Similarity Scores

This paper introduces a ruled-based method and software tool, called SemAligner, for aligning chunks across texts in a given pair of short English texts. The tool, based on the top performing method at the Interpretable Short Text Similarity shared task at SemEval 2015, where it was used with human annotated (gold) chunks, can now additionally process plain text-pairs using two powerful chunker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012